"We learn . . . 10% of what we read, 20% of what we hear, 30% of what we see, 50% of what we see and hear, 70% of what we discuss, 80% of what we experience, 95% of what we teach others."

~ William Glasser

Bacteria and Archaea

Chapter 27

Prokaryotic and Eukaryotic Cells Characteristics **Prokaryotic Cells Eukaryotic Cells** Cell Size Small (0.2 - 2.0 µm in diameter) Large (10 - 100 µm in diameter) Nucleus or nucleoli, Nucleoid Nuclear membrane and nucleoli Membrane-enclosed Present (e.g. lysosomes, Golgi complex, mitochondria) organelles Flagella Consists of two protein building blocks Consists of multiple microtubules Glycocalyx Present as a capsule of slime layer Present in some cells that lack a cell wall Cell wall Chemically simple when present Usually present,_ (cellulose and chitin) No carbohydrates, typically lack sterols Plasma membrane Sterols and Carbohydrates serve as receptors Cytoplasm No cytoskeleton or cytoplasmic streaming Cytoskeleton, cytoplasmic streaming Ribosomes Smaller size (____) Larger size (____), smaller size (70S) in organelles Chromosomes (DNA) _ chromosome chromosomes

None, transfer of DNA only

Involves meiosis

Cell division

Sexual Recombination

Endospore: structure consisting of a copy of the bacterium's chromosome protected by a ______ conditions Endospore Coat Coat Endospore Coat Coat

Asexual Reproduction | DNA replicates and then the cell divides into two separate cells | DNA Replication | Cell elongation | Septum formation | Each daughter cell receives one copy of the chromosome.

Genetic Recombination _____:DNA transferred between two prokaryotic cells that are temporarily joined together. > ______ transfer > Pili Sex pllus

Bacterial Shapes

Coccus or cocci

▶ Round or spherical shaped

Photo of Gram + bacteria from lab

Bacterial Shapes

Bacillus or Bacilli

Rod or pill shaped

Clostridium tetani from lab photo

Bacterial Shapes

Helical

Spiral shaped

Treponema pallidum from lab photo

Filamentous

▶ Elongated "chain" of cells

Cyanobacteria from lab photo

Cell Walls and Gram Staining

Gram staining identifies differences in bacterial cell wall structures

Most bacterial cell walls contain peptidoglycan

- _:a polymer composed of modified sugars cross-linked by short polypeptides
 - Antibiotics inhibit polypeptide formation

The staining procedure is as follows:

- Application of crystal violet
 Application of iodine
- 3. Alcohol wash
- 4. Application of safranin

Gram-positive - Violet in Color

Gram-negative - Red in Color

Gram-positivo bacteria Gram-negative

Gram+ and Gram- Bacteria (a) Gram-positive bacteria (b) Gram-negative bacteria

Peptidoglycan traps crystal violet, which masks the safranin dye.

Carbohydrate portion of lipopolysaccharide

Outer membrane Cell Peptidoglycan wall layer Plasma membrane

> Crystal violet is easily rinsed away, revealing the red safranin dye.

7

Check Your Understanding

True or False: Eukaryotic and prokaryotic cells both have a membrane-bound nucleus

True or False: Spherical shaped bacteria are known as bacillus

Check Your Understanding

The sticky outer coating that enables many prokaryotic cells to stick to each other or their host is known as the

- a. capsule
- b. endospore
- c. cell wall
- d. flagella

-

Check Your Understanding

The recombination of bacterial DNA as a result of introductions by bacteriophages is known as ______.

- a. conjugation
- b. transformation
- c. transduction
- d. binary fission

Oxygen Requirements

- ▶ Obligate aerobes: must use oxygen (O₂) for cellular respiration
- ▶ Obligate anaerobes: ______ by oxygen and live by fermentation or anaerobic respiration (ions other than O₂ act as electron acceptors)
- **anaerobes**: use O₂ if present, but can survive by fermentation or anaerobic respiration in anaerobic environments

Nutritional Requirements

Energy source: how they obtain energy

- ▶ Phototrophs: obtain energy from light
- Chemotrophs: obtain energy from ______

Carbon source: source of carbon used in organic molecules that make up cells

- ▶ Autotrophs: need only CO₂ or related compounds for carbon source
- Heterotrophs: require at least one ______ (ex. glucose) to make organic molecules

Nutritional Requirements

	1				
	Mode	Energy Source	Carbon Source	Organisms	
Autotrophs	Photoautotroph	Light	CO ₂	Photosynthetic prokaryotes (cyanobacteria), plants, some protists	
	Chemoautotroph	Inorganic compounds (H ₂ S, NH ₃ , or Fe ₂ ⁻)	CO2	Unique to some prokaryotes, usually found in deep sea environments	
Heterotrophs	Photoheterotroph	Light	Organic compounds	Unique to some aquatic and salt-loving prokaryotes	
	Chemoheterotroph	Organic or inorganic compounds	Organic compounds	Many prokaryotes, protists, fungi, animals, and some plants	

Bacteria: Proteobacteria

- Large, diverse group of gram-negative bacteria made up of five subgroups
 - Group includes pathogens E. coli, Vibrio cholerea, and Salmonella, and Rhizobium
 - _____: finger-like projections for attachment

Example: Escherichia coli (E. coli)

Shape: bacillus

Gram stain: negative

Nutritional requirements: chemoheterotrophs

Oxygen requirements: facultative anaerobic

Bacteria: Chlamydias

- > Parasites that can only survive within animal cells
 - Intercellular parasite

Example: Chlamydias trachomatis

Shape:

Gram stain: negative

Nutritional requirements: parasitic (heterotrophs)

Oxygen requirements: uncertain

Causes: Blindness, Most common STD in U.S.

Chlamydia (arrows)

-

Bacteria: Proteobacteria

- Large, diverse group of gram-negative bacteria made up of five subgroups
 - Group includes pathogens E. coli, Vibrio cholerea, and Salmonella, and Rhizobium
 - Fimbrae: finger-like projections for attachment

Example: Salmonella

Shape: bacillus

Gram stain: negative

Nutritional requirements: chemoheterotrophs

Oxygen requirements: _

Causes: Food poisoning

Bacteria: Spirochetes

- Some free living, others parasitic
 - Fibrils: flagella like filaments used for movement

Example: Treponema pallidum

Shape: _____

Gram stain: negative

Nutritional requirements: chemoheterotrophs

Oxygen requirements: anaerobic, but oxygen tolerant

Causes: Syphilis

Bacteria: Spirochetes

- Some free living, others parasitic
 - Fibrils: flagella like filaments used for movement

Example: Borrelia burgdorferi

Shape: helical

Gram stain: negative

Nutritional requirements: chemoheterotrophs

Oxygen requirements: ______, but low oxygen requirement

Causes: Lyme disease

Bacteria: Gram Positive Bacteria

- Large, diverse group of mostly chemoheterotrophic bacteria
 - Endospore

Example: Clostridium tetani

Shape: bacillus

Gram stain: positive

Nutritional requirements: chemoheterotrophs

Oxygen requirements:

Causes: lockjaw, tetanus

Exotoxin

Bacteria: Gram Positive Bacteria

- Large, diverse group of mostly chemoheterotrophic bacteria
 - Endospore

Example: Streptococcus

Shape: coccus

Gram stain: positive

Nutritional requirements: chemoheterotrophs

Oxygen requirements: _____, but oxygen tolerant

Causes: Strep throat

Bacteria: Gram Positive Bacteria

- Large, diverse group of mostly chemoheterotrophic bacteria
 - ▶ Endospore

Example: Staphylococcus

Shape: coccus

Gram stain: positive

Nutritional requirements: chemoheterotrophs

Oxygen requirements: facultative anaerobic

Causes: Food poisoning, toxic shock syndrome

Bacteria: Cyanobacteria

- ▶ Contains Chlorophyll A and phycocyanin

Example: Oscillatoria

Shape: filamentous

Gram stain: no stain

Nutritional requirements: photoautotrophs **Oxygen requirements**: facultative anaerobes

Causes: nitrogen fixation and photosynthesis

Nitrogen Metabolism

Nitrogen fixation: conversion of ______(N₂) to ammonia (NH₃)

- carry out nitrogen fixation
- Nitrogen used in formation of proteins and organic compounds

Bacteria: Cyanobacteria

_____: layered bio-chemical structures formed through the cementation of bio-films produced by cyanobacteria

- Oldest known fossils
 - 3.5 billion years old
- Only organisms for 1.5 billion years
- ▶ Found in shallow seas

Domain: Archaea

Carl Woese — Prokaryotic cell but similar to Eukaryotes in DNA replication and Protein synthesis

_____: organisms that live grow best in one or more conditions that would kill most organisms

- ▶ Thermophiles: live in extremely ____ environments
- ▶ Halophiles: live in extremely _____ environments
- Methanogens: Methane releasing archaea that are poisoned by ______

Comparison of Three Domains of Life

Characteristics	Bacteria	Archaea	Eukarya
Nuclear envelope	Absent		Present
Membrane-bound organelles	Absent		Present
Peptidoglycan in cell wall	Present	Absent	Absent
Membrane lipids	Unbranched hydrocarbons	Some branched hydrocarbons	Unbranched hydrocarbons
RNA polymerase	One kind	Several kinds	Several kinds
Initiator amino acid for protein synthesis	Formylmethionine		Methionine
Response to antibiotics	Growth inhibited	Growth not inhibited	Growth not inhibited
Histones associated with DNA	Absent	Present in some species	Present
Introns in genes	Very rare	Present in some genes	Present in many genes
Circular chromosome	Present		Absent
Growth at temps above 100°C	No	Some species	No

Prokaryotes Role on Earth

Decomposers bacteria breakdown organic matter Symbiosis with other organisms Mutualism (+ host, + symbiont)

- Intestinal bacteria
- Sulfate consuming bacteria and methane consuming archaea
- Commensalism (N/A host, + symbiont)
 - Bacteria on skin
- Parasitism (- host, + symbiont)
 - Pathogens
 - □ Endotoxins: only release when bacteria die or cell walls break down
 - Exotoxins: released by bacteria

:use of organisms to remove pollutants from soil, air, or

water

Check Your Understanding

True or False: Gram-negative bacteria have a thin plasma membrane sandwiched between two layers of peptidoglycan

True or False: Cyanobacteria are the only organism that can perform nitrogen fixation and photosynthesis

True or False: Bacteria and Archaea are both made up of prokaryotic cells

Check Your Understanding

Which of the following modes of nutrient acquisition use inorganic compounds as an energy source and organic compounds as a carbon source?

- a. photoautotrophs
- b. chemoheterotrophs
- c. photoheterotrophs
- d. chemoautotrophs

Check Your Understanding

A bacteria that is poisoned by oxygen and must synthesize energy through fermentation is known as a(n)_____

- a. obligate anaerobe
- b. obligate aerobe
- c. facultative anaerobe
- d. facultative aerobe